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Experimental results are presented for the instantaneous release of a constant volume 
of air into water in a long horizontal tube of square cross-section. The tube is closed 
at both ends and the volume of air is confined at one of the ends before it is released. 
The resulting motion, after the rapid formation of an air-cavity front, may be divided 
into three phases : initially the front of the air cavity moves at constant speed, later 
its speed decreases monotonically, and finally its speed executes a long series of erratic 
stops and starts before coming entirely to rest. The transition from the first to the 
second phase is observed to occur when a disturbance due to the tube end overtakes 
the cavity front. The final phase is dominated by surface-tension effects, complicated 
by surface contaminants. A simple model of the flow, based on Benjamin’s (1968) 
theory of steady cavity flow and the classical theory of hydraulic jumps, is developed. 
With correction for surface tension, the model results compare well with the 
experimental results for the first two phases. 

1. Introduction 
Previous experimental studies of air-cavity motion in horizontal tubes have been 

conducted by Zukoskit (1977), Gardner & Crow (1970) and Wilkinson (1982). In  all 
these investigations, air cavities were produced by opening, fully or partially, one 
end of a closed tube filled with water. The purpose of the studies described herein 
was to determine the front speeds and shapes of the air cavities thus produced. The 
three different kindsof cavity profiles that are observed in tubesof square cross-section 
are sketched in figure 1.  

Benjamin (1968) proposed a theory for such air-cavity motion that assumes the 
flow is steady and that the effects of surface tension and of viscosity at the solid 
boundaries are unimportant. By requiring the bulk conservation of mass and 
momentum in a control volume that moves with the cavity front, he determined the 
speed of the front as a function of the uniform downstream water depth d and the 
tube depth D (as shown in figure 1) .  He also showed that physically possible flows 
exist only with d >, iD and that energy is dissipated in these flows when d > +D. In 
addition, he proved that the profile shape for the energy-conserving flow has the 
shape sketched in figure 1 (a), with the cavity depth asymptotically approaching t D  
downstream. 

t Zukoski (1966) also studied cavity motion in inclined tubes and used several liquid-liquid 
combinations as well as air and water. 
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The observations of the three experimental studies previously cited show that 
Benjamin’s energy-conserving cavity flow results if the water is allowed to flow freely 
out of the end of the tube - and if the cross-section of the tube is large enough for 
the effects of surface tension and of the boundary layers at the tube wall to be 
negligible. However, these effects are significant for normal laboratory tube dimen- 
sions. For example, Gardner & Crow’s results show that for tube depths of 10 cm the 
measured front speed is 7 yo less than predicted by Benjamin’s analysis. 

Benjamin suggested that when the water flowing from the end of the tube is 
throttled, steady flows would probably exist only for d / D  2 0.65 and that the 
cavities in these flows would have shapes similar to that sketched in figure 1 (c). He 
argued that his steady solutions with 0.5 < d / D  5 0.65 are probably unstable in this 
experimental arrangement and that they would become unsteady or jump to another 
steady solution with 0.65 5 d / D  5 0.78. However, Wilkinson found experimentally 
that the flow is unsteady if the water depth at the tube outlet is 0.5 < d / D  5 0.78. 
The cavity front has the speed and shape of Benjamin’s energy-conserving cavity 
(with d, = 4D) but is followed by a hydraulic jump (as shown in figure 1 b )  that travels 
at a speed slower than that of the front. With d / D  > 0.78 at the water outlet, 
Wilkinson observed that the flow becomes steady, with cavity shape as shown in 
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figure 1 (c), and the front speed is accurately described by Benjamin’s analysis (with 
small corrections for surface tension). 

The work presented herein is an experimental study of the motion that results when 
an air cavity of constant volume is released from rest in a closed horizontal tube that 
is filled with water. The purpose of our study is to determine the front speed and shape 
of the cavity as a function of time after release. Our experimental techniques and 
qualitative observations are described in $2. The motion after release is in many 
respects similar to that observed by Wilkinson (1982), but there are some interesting 
differences which we attempt to model in a new way. In  $ 3, we develop a simple model 
of the flow, based on Benjamin’s (1968) theory - with corrections for surface-tension 
effects suggested by Wilkinson (1982) - and the classical theory of hydraulic jumps. 
Finally, in $4, we remark on the implications of our results to two-phase flows in pipes 
and ducts. We restrict attention to tubes of square cross-section but, following 
Benjamin (1968), the analysis could readily be adopted to tubes of circular 
cross-section. 

In all our experiments, because of practical necessity, the longitudinal shape of the 
air cavity before release was a rectangle, but the details of the initial cavity shape 
should have only a small effect on the resulting motion. We observed in all cases that 
a steady cavity front is established within a few tenths of a second after release, and 
that its properties are a function only of the characteristic length and depth of the 
initial cavity and not of the particular cavity shape. A different initial cavity shape 
would change only slightly the time taken to establish the steady front. The difference 
is likely to be smaller than the accuracy with which we could measure the front 
position. 

An application of this flow in engineering practice is the simple horizontal chemical 
or metallurgical reactor in which a gas volume is released into a cylinder of liquid 
at  rest. The hydraulic jump that occurs in these flows, as we describe later, serves 
as a mixing zone. 

2. Experiments 
The experiments were conducted in an acrylic plastic tube of 10cm square 

cross-section and 2.5 m length. To contain the volume of air a vertical gate was 
installed in the tube 40 cm from one end. A moveable wall allowed the length of the 
tube behind the gate to be reduced if desired. A hand-operated device enabled an 
operator to withdraw the gate in less than 0.1 s. For an experiment, the tube was 
partially filled with water while in a tilted position with the gate end slightly raised. 
The tube was then brought to a horizontal position and the air space behind the gate 
was adjusted to the desired level by siphoning. The gate was then withdrawn, 
releasing the air into the tube. The independent parameters in these experiments, 
then, are the initial cavity length X, and the initial depth do of the water under the 
cavity. All the measurements were taken from still photographs made with a 
motor-driven camera. An exposure interval of about 0.33 s with accuracy to within 
0.02 s was determined from an electronically controlled pattern of lights in each 
photograph. 

The observed motion after release may be divided into several phases. We choose 
to define the phases primarily according to the behaviour of the cavity front. The 
cavity front is established within a few tenths of a second after release, and rapidly 
accelerates up to a constant speed. We call the period during which the front travels 
at constant speed the first phase. In  the following second phase, the front speed 
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FIG~RE 2. Sequential photographs of the collapse of an air cavity at $, j and s after release, 
with D = 10 cm, do = 0 cm, X, = 40 cm. These cavity shapes are representative of cavity flows 
with 0 < d,/D 5 0.3. 

decreases monotonically. Finally, in the third phase, the front executes a long series 
of erratic stops and starts before coming entirely to rest. The overall shape of the 
cavity is distinctly different, at least in the first phase of motion, depending on the 
initial cavity depth. 

When 0 < d,/D 5 0.3 the cavity profile in the first phase of motion after release 
is as shown in the sequential photographs in figure 2. The photographs are actually 
for the case with d,/D = 0 ,  but they are representative of this class of flows. The 
overall shape of the cavity, except the front, changes constantly during the first phase. 
Within a few fractions of a second after release, the front evolves into Benjamin’s 
energy-conserving cavity shape (as in figure l a ) .  At the same time, the water 
displaced by the advancing cavity rushes in the opposite direction (toward the 
end of the tube) in the form of a surge. The overall cavity shape is as shown in 
figure 2 (a) .  When the surge reaches the tube end it is reflected as a hydraulic jump. 
The cavity then has the shape shown in figure 2 ( b ) .  This is similar to what Wilkinson 
observed, as sketched in figure 1 ( b ) ,  but in the present case, opposite to Wilkinson’s 
observations, the jump has a slightly greater speed than that of the cavity front. 
Eventually the jump overtakes the front, which until this time has maintained 
constant speed and shape, abruptly reducing its speed and depth, and thus ending 
the first phase. Just after the jump overtakes the front the shape of the cavity which 
is shown in figure 2 (c) is similar to that in figure 1 (c). 

When 0.3 5 d , /D  < 1 the cavity profile in the first phase of motion after release 
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FIGURE 3. Sequential photographs of the collapse of an air cavity at 4, and $ 8  after release 
with D = 10 cm, do = 7 cm, X,, = 40 cm. These cavity shapes are representative of cavity flows 
with 0.3 < d o / D  < 1.0. 

is as shown in the sequential photographs in figure 3. Again, although these 
photographs are actually of the case with d, /D = 0.7,  they are representative of this 
class of flows. As in the previous case, a steady front is formed in a few fractions of 
a second after release, but here the front consists of a short, rounded bubble that is 
connected to the following volume of air by a shallow ' neck '. A t  the same time that 
this front propagates away from the tube end, what appears to be a weak, undular 
bore propagates along the bubble interface towards the tube end. The cavity shape 
at this stage is as shown in figure 3 (a ) .  The disturbance is reflected at the tube end, 
producing the cavity shape shown in figure 3(b). Eventually the reflected wave 
overtakes the front, which until this time has maintained constant speed and shape, 
and the speed and depth of the front begin to decrease. The cavity shape just after 
this occurs is shown in figure 3(c) ,  which is seen to be similar to the profile in 
figure 2(c) .  A closer look a t  the cavity front in this case is given in figure 4, which 
is a superposition of four successive front profiles from one of our experiments. This 
sequence shows the details of the front being overtaken by the disturbance; we 
observed that the front speed remained constant until the disturbance reached the 
part of the cavity where the water depth under the cavity equals d,  (the minimum 
water depth), then the front speed steadily decreased. 

The second and third phases of the motion were qualitatively the same for all the 
different initial conditions we used. In the second, which begins when the front speed 
starts to decrease, the cavity is well described as collapsing through a series of 

11-2 
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FIQURE 4. Tracings of an air-cavity profile for several times after release with D = 10 cm, do = 7 cm, 
X,, = 40 cm. The profiles have been superposed so that the leading edges are at the same position. 
Roman numerals indicate the position of the leading edge of the disturbance emanating from the 
tube end. --I, t = 0.73 s ;  --- 11, t = 10.04 s ;  . . . III, t = 1.37 s ;  + IV, t = 1.67 s. 

(4 
FIGURE 5. Plan-view photographs of the air-cavity front: (a) during 

the second phase; (b) during the third phase. 
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equal-area rectangles, with the front speed and approximately uniform cavity depth 
decreasing monotonically. In  the third phase the cavity front develops an irregular 
three-dimensional shape and the front speed is erratic. The motion is dominated by 
surface tension and its effects are complicated by contaminants on the upper tube 
surface. Figure 5 shows two photographs of the cavity front taken from above the 
transparent upper surface of the tube. Figure 5 (a)  shows a smooth two-dimensional 
front during the second phase, and figure 5 ( b )  shows an irregular three-dimensional 
front during the third phase. 

Of course the nature of the flow is different if d, /D is too close to unity or X , / D  
is too small. In the first case, surface tension dominates all other effects. The bubble 
simply jumps to a new equilibrium shape. This appears to occur when d, /D 2 0.8. 
In  the second case, the formation of the cavity front is interfered with by the end 
wall. The cavity motion then is a strong function of X, /D .  This appears to occur when 

We note in passing that the qualitative features of the first two phases of the 
collapse of air cavities are similar in many ways to the collapse of a volume of salt 
water into fresh water, as described by Rottman & Simpson (1983). Quantitatively, 
the first phase is quite similar, but the second is significantly different. The difference 
is due mainly to surface tension and the absence of mixing in the air-cavity flows. 
The final phase, which is dominated by surface tension effects, is of course absent 
in the salt-water experiments. 

X , / D  5 1 .  

3. Results and analysis 
3.1. Thefirst phase 

The two different types of cavity shapes in the first phase are shown schematically 
in figures l ( b )  and (c). The sketch in figure l ( b )  corresponds to a flow with 
0 < d, /D 5 0.3 and that in figure 1 (c) to a flow with 0.3 ;5 d , /D  < 1 ,  although the 
depth d in the latter case is not uniform in our flows (as indicated more clearly in 
figure 4). Even though the cavity shapes are quite different, the front speeds and 
shapes remain steady during the first phase in both cases. 

Figure 6 is a plot of the cavity-front position and the position of the hydraulic jump 
(after it has been reflected from the tube end), for the flow with d, /D = 0, as functions 
of time after release. The solid lines in this plot are straight-line fits to the data at 
early time. It is clear that both the front and the jump travel at constant speed 
initially and that the front speed begins to decrease at the point where the two 
straight lines intersect. The speeds of the front end the jump during the first phase 
were estimated from the slopes of these lines. Similar plots were made for the other 
values of d, /D and the estimated speeds thus obtained are plotted in figure 7. For 
d , /D  > 0.3 the disturbance was too weak to measure accurately and so the speeds 
of these disturbances are not plotted. 

The most easily measured characteristic of the cavity front is the minimum water 
depth d,, defined in figure 1. This depth is constant in all cases throughout the first 
phase. For the flows corresponding to figure 1 (b)  the cavity front curves smoothly 
from its contact line to a level depth d,. For flows corresponding to figure 1 (c), the 
cavity interface is curved where the water depth equals d,  and is rough and unsteady 
immediately downstream of this point. The other depths that appear in figure 4 are 
either unsteady or are difficult to measure accurately. The measured values of d, as 
a function of d, /D are plotted in figure 8. 
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FIGURE 6. The position of the front and the hydraulic jump as a function of time after release for 
an air cavity with D = 10 cm, do = 0 cm: - straight-line fits to the data a t  early time; 0, 
X, = 24 cm; A, X, = 30 cm; 0, X, = 35 cm; V, X, = 40 cm. 
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FIGURE 7. The non-dimensional front speed F during the first phase of collapse of an air cavity 
as a function of d,/D: 0, X , / D  = 1 ; 0, X , / D  = 2;  0,  X , / D  = 3; A, X , / D  = 4. (The solid curve 
is the solution of (8) and (g).) And the non-dimensional bore speed Fb: v. (The dashed line is the 
theoretical result Fb = 0.59.) 

We can determine a relationship between the front speed U, and the depth d ,  by 
using a method similar to  that used by Benjamin (1968). Since in general the cavity 
interface is curved where the water depth equals d,, we have to  modify his method 
to account for this curvature. We could solve the entire steady-potential-flow 
problem using the finite-element method developed by Meric, Tubarrok & Baines 
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FIGURE 8. The depth d, of the water under the cavity front during the first phase of collapse of 
an air cavity as a function of d,/D. The symbols are as defined in figure 7. The solid line is the 
value derived in the text for 0 < d o l l )  5 0.3, and the dashed curve is a straight-line fit to the data 
for 0.3 < d , / D  < 1.0. 
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FIGURE 9. Definition sketch for the potential-flow analysis of the air-cavity front. 

(1982), but they did not include the effects of surface tension nor of the displacement 
of the stagnation point due to viscosity. We find the simpler but approximate integral 
method described below to be entirely adequate for our purposes. 

The flow near the cavity front in a reference frame moving with the front is 
sketched in figure 9. We consider the flow within the control volume ABCDE, as 
shown in the figure. We have chosen intentionally a region of the flow that is smooth 
and steady so that, to a good approximation, energy is conserved in the control 
volume. The conservation equations for the fluxes of mass and momentum are, 
assuming that the motion is steady and the pressure hydrostatic across AE, 

* 

pUf D = piid,, ( 1 )  
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- J o  u=- 

d f  ’ 

J: u2 dy 
a =  

iPd, ’ 

(3) 

(4) 

and p is the pressure in the fluid, p ,  is the pressure at A, p ,  is the pressure in the 
cavity, g is the acceleration due to gravity and p is the density of water (the density 
of air is considered negligible compared to that of water). If the interface had zero 
curvature at C (as in Benjamin’s model) then u = ii and a = a1 = 1. 

Applying Bernoulli’s equation along the streamline ASC and throughout ASCDE, 
we obtain the relations 

(6) 
where uc is the fluid speed and p c  is the pressure in the fluid at C .  The surface tension 
and interface curvature at C will cause the pressure in the cavity to exceed the 
pressure in the fluid such that 

Po + PgD + ; P q  + Pc + PSdf + i P 4  = P + PSY + iPU27 

0- 
Pl = pc+--, (7) 

TC 

where u is the surface tension and rc the radius of curvature of the interface at C. 
Using (6) and (7)  in ( 5 ) ,  we obtain an expression for al, 

where Fz = U,2/(gD). 
Following Wilkinson (1982) we can also obtain a relationship between po and p,. 

We let p s  denote the pressure at the stagnation point S which, due to viscous effects, 
is located at a distacce hs below the upper boundary (as shown in figure 9). Applying 
Bernoulli’s equation along the streamline AS, we obtain 

PO+iPV = Ps-Pghs. (9) 
The relationship between the pressure inside the cavity and the stagnation pressure 

(10) 
is 

where rs is the radius of curvature of the interface at S. From (9) and (10) we obtain 
the desired relationship 

Using ( l ) ,  (7), (8) and (9) in (2) and (6), we obtain the two equations 

Pl = Ps+g/Ts, 

P1 = PO+iPV+~/~S+P9hS .  (11)  

P+ l=F-  ”[ a+ (:y] y + ($1 - -2- r ,ab($)CA’  
d f  

2 = P ( g ) 2 6 ) 2 + 2 e ) - 2 - + A ,  a2 

TC D 

where a = g / (pg )  and A = 2a2/(rs D )  + 2hs/D. 
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Equations (12)  and (13) are the same as those derived by Wilkinson (1982) if we 
set a = 1 ,  ( u c / U )  = 1 and rC = 00 ; that is, the equations are the same as Wilkinson's 
if we neglect the effects of interface curvature at  C. As did Wilkinson, we have 
neglected the contribution to these equations due to surface tension that Gardner 
6 Crow (1970) included. These terms are of order (a /D)2 ,  and for our size tubes are 
much less than the included surface-tension effects which are of order a 2 / ( r s D ) .  In 
the following, we also neglect the terms in (12) and (13) that are of order a2/ (rc  D ) ,  
because these are also generally much smaller than the surface-tension terms of order 
a2/(rs  D ) .  This assumption is verified by the calculations of Meric et al. (1982). 

Wilkinson's 1982 experiments show that the shape and dimensions of a moving 
cavity in the immediate neighbourhood of the stagnation point are approximately 
independent of the speed of the cavity front. The parameter A is only dependent on 
the shape of the cavity near the stagnation point, and the value that Wilkinson 
proposed for this parameter is d x 2.8alD. The numerical calculations of two- 
dimensional bubbles by Meric et al. (1982) suggest that, to a good approximation, 
~ + ( U ~ / U ) ~  N 1 +(uC/i# in (12) .  With these assumptions, (12) and (13)  determine F 
and d , /D  for specified uc/U. Note that the range is 1.0 < u c / U  6 1.6. 

For flows with 0 < d, /D 5 0.3, the cavity interface is smooth and asymptotically 
becomes level downstream. The appropriate value of (uC/U)" for this case is unity. 
Substituting this value in (12) and (13) ,  we retrieve Wilkinson's (1982) result 

If we set d = 0 in this expression, we obtain Benjamin's (1968) result for his 
energy-conserving cavity. With A = 0.08, which is the appropriate value for an 
air-water interface at 20 "C in our 10 cm deep tube d , /D  = F = 0.46, in good 
agreement with our measurements as shown in figures 7 and 8. 

For 1 > d o / D  2 0.3,  the relationship between F and d , /D  from (12)  and ( 1 3 )  is 
compared with our measured values in figure 7 .  To obtain this comparison, we used 
the relation 

df = 0.33 + 0.55 0 
D D '  

which is obtained by fitting a straight line to the data points between 1 > d , /D  2 0.3 
in figure 8, and the parameter ( u c / U )  was varied from 1.0 to 1.6. The results plotted 
in figure 7 show the agreement between the theory and the measurements. 

When 0 < d, /D 5 0.3, the hydraulic jump that is generated at the tube end and 
which eventually overtakes the cavity front is well defined and easy to measure. Since 
the free surface is level and steady on either side of the jump, its speed and strength 
can be simply estimated using classical theory. The water is a t  rest relative to the 
tube downstream of the jump, so mass conservation through the jump requires 

(15) 
d 

Udd-d , )  = U,(D-d,) ,  (16) 

where U, is the speed of the jump (or bore), and conservation of momentum through 
the jump gives the additional relation 

where b = 1 + 2F2D(D-d,)2/d: is a constant defined by the speed and depth of the 
front. If the ideal front derived by Benjamin (1968) is used, we find that the only 
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FIGURE 10. The length X, of the cavity when its front speed begins to decrease, as a function of 
d, /D:  ---, theory; 0, experiment, as computed from (15). 

valid solution of (16) and (17) is d / D  = 0.90 and Fb = Ub/gD)i  = 0.62 and, if the 
corrections of Wilkinson (1982) are applied, the solution is d / D  = 0.886, Fb = 0.59. 
The average value of d / D  from 13 experiments with uniform flow underneath the 
cavity is 0.885 k 0.015, in close agreement with the theoretical value. The solution for 
Fb is plotted with the measured values in figure 7 and is also in good agreement. We 
note that this particular cavity solution is one member of a set of cavities determined 
by Wilkinson (1982). 

3.2. The second phase 
Since the cavity shape is observed to be approximately rectangular at the beginning 
of the second phase, an estimate of the position X ,  of the cavity front and of the time 
t ,  after release at  which the second phase begins, are given by 

x, = X 0 ( D - - d , ) / ( D - - d S ) >  (18) 

t ,  = ~ x s - x , ~ / ~ f ~  (19) 

where d ,  is the (approximately uniform) depth of the water under the cavity at  the 
beginning of the second phase. Relations (18) and (19) follow from the conservation 
of the cavity volume and the steadiness of the front speed during the first phase. For 
the cases with 0 < d , / D  5 0.3, d , / D  = 0.886, as derived above. The value of X , / X ,  
from (18) using this value for d , / D  is plotted in figure 10 as a function of d , / D .  Also 
shown in this plot are our measurements of this length. The measurements were made 
by determining the position on a plot of the front position versus time where the 
deviates form a straight line. For d , / D  > 0.3 we have no theoretical estimates of d,/do, 
but it appears from the data in figure 10 that X , / X o  does not vary much from 
about 4 in these cases. 

During the second phase of collapse the depth of the front (or leading edge) of the 
cavity is only slightly larger than the nearly horizontal surface of the remainder of 
the cavity. Therefore it is reasonable to approximate the profile as rectangular. Thus, 
conservation of air volume can be written 
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FIGURE 11.  The cavity-front position aa a function of time after release. Experiments: 0,  
d,/D = 0 ;  0, d,/D = 0.5; A, d,/D = 0.7. Theory: - (numerical solution of (17)).  

where d is the uniform depth of the water under the cavity and the overhead dot 
denotes differentiation with respect to time. Furthermore, if we assume that the front 
speed is quasi-steady, then conservation of momentum for the flow relative to the 
cavity is expressed by (1) with a = 1 and u C / U  = 1. The front speed Up therefore can 
be determined from (12) as a function of d / D .  Here we have chosen the section CD 
sufficiently far behind the front so that the surface is level and consequently we can 
no longer require the conservation of energy. Substituting this relation for up into 
(20), we obtain a differential equation for d as a function of time 

xo d = ( - [ - (DP-d2-JD2) / (2D-d)]  D-d)2 d 
t 

(gD)t (D-do)  D2 

Numerical solutions of this equation are plotted in figure 11 along with our 
experimental measurements for these particular cases. The initial conditions for (21) 
were obtained from figures 9 and 10 and (9). The data plotted in this figure are 
measurements of the front position X p  as a function of time after release. The front 
position is related to d in (21) by X p ( D - d )  = Xo(D-do) .  The agreement is seen to be 
good. 

3.3. The third phase 
The third phase begins when the cavity motion becomes erratic. This occurs because 
the surface-tension forces become strong enough to bring the motion to rest; that 
is, the cavity approaches the limit of a static two-dimensional bubble. The value of 
A in the static limit is different from the value we have used for the moving cavity. 
For a stationary bubble, hs = 0 and rs depends in some way on the contact angle 
between the air-water interface and the solid surface. The motion is erratic because 
randomly distributed contaminants on the Plexiglas surface affect the contact angle. 

We can estimate the length of a static two-dimensional cavity with specified 
contact angle do (see figure 9) in the following way. For a bubble of infinite length, 
the interface becomes plane far from the contact point. The maximum depth h of 
such a bubble, as derived (for example) by Batchelor (1967 pp. 63-68), is 

h = D - d  = [2a2(1 +cos$~)]~ .  (22)  
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FIGURE 12. The measured lengths of air cavities at the time when the front motion becomes erratic 
(the beginning of the third phase). The predicted lengths from (19) : -, contact angle = 0; ---, 
contact angle = 90'. 

The bubbles in our experiments were not infinite, but had a length at least 100 times 
the depth, so the interface is nearly plane far from the contact point and (18) is a 
very good estimate for h. The static length Xm of our bubbles, then, can be obtained 
from the conservation of bubble volume as 

For an aipwater-Plexiglss interface, 9, = 0, and for an air-water interface at 20 "C 
in our 10 cm tube, a/D = 0.027. With these volumes, the static bubble length is 
Xm 1: 18(1-d,/D)XO. If the surface is contaminated, $,, would be increased. 
Taking 9, =in, the maximum value expected for a contaminated surface, 
Xm N 26( 1 - d , /D)  X,. 

A series of twelve experiments was carried out in which the value of Xm was 
measured. The value of Xm was taken as the length of the bubble just before its 
motion became erratic. The results are plotted in figure 12. The solid line in the figure 
is (19) with 4, = 0 and dashed line with 9, = in. No attempt was made to remove 
contaminants from the surface, so a random distribution of values of +o between 0 
and in would be expected. This is confirmed by the experimental results falling 
between the lines. 

4. Concluding remarks 
The characteristic bubble behaviour that we have described has also been seen for 

large air bubbles in more complicated flows. The photographs made by Fuentes 
(1969), for example, of large bubbles being transported through a circular pipe, clearly 
show the type of behaviour we would expect from our experiments. The techniques 
we have used should be able to predict other features of this flow and should provide 
a basis for analysis of other two-phase flows. 
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